Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 892: 41

Answer

The kinetic energy required to rotate the disk about the $x$-axis is $\frac{{25}}{2}M{R^2}$ joules.

Work Step by Step

We have the disk ${\cal D}$ defined by ${x^2} + {y^2} \le {R^2}$, with total mass $M$ kg. Assuming that the mass density is uniform, the mass density $\delta$ is given by $\delta = \frac{M}{A} = \frac{M}{{\pi {R^2}}}$. Using polar coordinates, the description of ${\cal D}$: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le R,0 \le \theta \le 2\pi } \right\}$ Evaluate the moment of inertia ${I_x}$ in polar coordinates: ${I_x} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {y^2}\delta \left( {x,y} \right){\rm{d}}A = \frac{M}{{\pi {R^2}}}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^R {\left( {r\sin \theta } \right)^2}r{\rm{d}}r{\rm{d}}\theta $ $ = \frac{M}{{\pi {R^2}}}\left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } {{\sin }^2}\theta {\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^R {r^3}{\rm{d}}r} \right)$ Consider the first integral on the right-hand side. Using the Double-angle formulas in Section 1.4: ${\sin ^2}x = \frac{1}{2}\left( {1 - \cos 2x} \right)$ we get ${I_x} = \frac{M}{{2\pi {R^2}}}\left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {1 - \cos 2\theta } \right){\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^R {r^3}{\rm{d}}r} \right)$ ${I_x} = \frac{M}{{8\pi {R^2}}}\left( {\left( {\theta - \frac{1}{2}\sin 2\theta } \right)|_0^{2\pi }} \right)\left( {{r^4}|_0^R} \right)$ $ = \frac{M}{{8\pi {R^2}}}\left( {2\pi } \right)\left( {{R^4}} \right) = \frac{M}{4}{R^2}$ With angular velocity $\omega = 10$ rad/s, the kinetic energy required to rotate the disk about the $x$-axis is ${\rm{RotationalKE}} = \frac{1}{2}{I_x}{\omega ^2} = \frac{1}{2}\cdot\frac{M}{4}{R^2}\cdot{10^2} = \frac{{25}}{2}M{R^2}$ joules
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.