Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 37

Answer

(a) $z = - 4 \mp \sqrt {{x^2} + {y^2} - 12x + 12} $ (b) The formula $z = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ defines the portion of the surface satisfying $z \ge - 4$. The formula $z = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ defines the portion satisfying $z \le - 4$. (c) 1. using the formula $z = f\left( {x,y} \right)$ For $z = f\left( {x,y} \right) = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ For $z = f\left( {x,y} \right) = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = - \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ 2. via implicit differentiation $\frac{{\partial z}}{{\partial x}} = - \frac{{2x - 12}}{{ - 2z - 8}} = \frac{{x - 6}}{{z + 4}}$ For $z = f\left( {x,y} \right) = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ For $z = f\left( {x,y} \right) = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = - \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ The two methods give the same results. Hence, the answers agree.

Work Step by Step

(a) We have $F\left( {x,y,z} \right) = {x^2} + {y^2} - {z^2} - 12x - 8z - 4 = 0$. We arrange the terms such that $F\left( {x,y,z} \right) = - {z^2} - 8z + \left( {{x^2} + {y^2} - 12x - 4} \right) = 0$ Using the quadratic formula we solve for $z$ as a function of $x$ and $y$: $z = \frac{{8 \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( { - 1} \right)\left( {{x^2} + {y^2} - 12x - 4} \right)} }}{{2\left( { - 1} \right)}}$ $z = - 4 \mp \sqrt {{x^2} + {y^2} - 12x + 12} $ (b) From part (a) we obtain $z = - 4 \mp \sqrt {{x^2} + {y^2} - 12x + 12} $. The formula $z = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ defines the portion of the surface satisfying $z \ge - 4$. The formula $z = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ defines the portion satisfying $z \le - 4$. (c) 1. Calculate $\frac{{\partial z}}{{\partial x}}$ using the formula $z = f\left( {x,y} \right)$ For $z = f\left( {x,y} \right) = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ For $z = f\left( {x,y} \right) = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = - \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ 2. Calculate $\frac{{\partial z}}{{\partial x}}$ via implicit differentiation Let $z$ be defined implicitly as a function of $x$ and $y$ by the equation $F\left( {x,y,z} \right) = - {z^2} - 8z + {x^2} + {y^2} - 12x - 4 = 0$ The partial derivatives are $\frac{{\partial F}}{{\partial x}} = 2x - 12$, ${\ \ }$ $\frac{{\partial F}}{{\partial y}} = 2y$, ${\ \ }$ $\frac{{\partial F}}{{\partial z}} = - 2z - 8$ Using the Chain Rule we get $\frac{{\partial F}}{{\partial x}}\frac{{\partial x}}{{\partial x}} + \frac{{\partial F}}{{\partial y}}\frac{{\partial y}}{{\partial x}} + \frac{{\partial F}}{{\partial z}}\frac{{\partial z}}{{\partial x}} = 0$ Since $\frac{{\partial x}}{{\partial x}} = 1$, ${\ \ }$ $\frac{{\partial y}}{{\partial x}} = 0$, so $\frac{{\partial F}}{{\partial x}} + \frac{{\partial F}}{{\partial z}}\frac{{\partial z}}{{\partial x}} = 0$ $\frac{{\partial z}}{{\partial x}} = - \frac{{\partial F}}{{\partial x}}/\frac{{\partial F}}{{\partial z}}$ Substituting $\frac{{\partial F}}{{\partial x}}$ and $\frac{{\partial F}}{{\partial z}}$ in the equation above gives $\frac{{\partial z}}{{\partial x}} = - \frac{{2x - 12}}{{ - 2z - 8}} = \frac{{x - 6}}{{z + 4}}$ For $z = f\left( {x,y} \right) = - 4 + \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ For $z = f\left( {x,y} \right) = - 4 - \sqrt {{x^2} + {y^2} - 12x + 12} $ $\frac{{\partial z}}{{\partial x}} = - \frac{{x - 6}}{{\sqrt {{x^2} + {y^2} - 12x + 12} }}$ We conclude that the two methods give the same results. Hence, the answers agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.