Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 21

Answer

Using the Chain Rule we compute the derivatives of $u$ with respect to $r$ and $\theta$ and obtain Eq. (8): $||\nabla u|{|^2} = {u_r}^2 + \frac{1}{{{r^2}}}{u_\theta }^2$

Work Step by Step

In polar coordinates, we have the relations: $x = r\cos \theta $, ${\ \ }$ $y = r\sin \theta $ So, $u = u\left( {x\left( {r,\theta } \right),y\left( {r,\theta } \right)} \right)$. Using the Chain Rule we compute the derivatives of $u$ with respect to $r$ and $\theta$: 1. $\frac{{\partial u}}{{\partial r}} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial r}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial r}}$ ${u_r} = {u_x}\cos \theta + {u_y}\sin \theta $ 2. $\frac{{\partial u}}{{\partial \theta }} = \frac{{\partial u}}{{\partial x}}\frac{{\partial x}}{{\partial \theta }} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial \theta }}$ ${u_\theta } = - r{u_x}\sin \theta + r{u_y}\cos \theta $ Next, we compute ${u_r}^2 + \frac{1}{{{r^2}}}{u_\theta }^2$ ${u_r}^2 + \frac{1}{{{r^2}}}{u_\theta }^2 = {\left( {{u_x}\cos \theta + {u_y}\sin \theta } \right)^2} + \frac{1}{{{r^2}}}{\left( { - r{u_x}\sin \theta + r{u_y}\cos \theta } \right)^2}$ $ = {u_x}^2{\cos ^2}\theta + 2{u_x}{u_y}\cos \theta \sin \theta + {u_y}^2{\sin ^2}\theta $ ${\ \ \ }$ $ + \frac{1}{{{r^2}}}\left( {{r^2}{u_x}^2{{\sin }^2}\theta - 2{r^2}{u_x}{u_y}\sin \theta \cos \theta + {r^2}{u_y}{{\cos }^2}\theta } \right)$ $ = {u_x}^2{\cos ^2}\theta + 2{u_x}{u_y}\cos \theta \sin \theta + {u_y}^2{\sin ^2}\theta $ ${\ \ \ }$ $ + {u_x}^2{\sin ^2}\theta - 2{u_x}{u_y}\sin \theta \cos \theta + {u_y}{\cos ^2}\theta $ $ = {u_x}^2 + {u_y}^2$ Since $\nabla u = \left( {{u_x},{u_y}} \right)$, so $||\nabla u|{|^2} = {u_x}^2 + {u_y}^2$. Hence, $||\nabla u|{|^2} = {u_r}^2 + \frac{1}{{{r^2}}}{u_\theta }^2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.