Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 30

Answer

\begin{align*} \frac{\partial r}{\partial t} &= \frac{ e^{s / r} }{2r+\frac{st}{r^2}e^{s/r} }\\ \frac{\partial t}{\partial r} &= \frac{2r+\frac{st}{r^2}e^{s/r} }{ e^{s / r} } \end{align*}

Work Step by Step

Given $$r^{2}=t e^{s / r}$$ Consider $$F(r,s,t )=r^{2}-t e^{s / r} $$ Then \begin{align*} F_{r}&=2r+\frac{st}{r^2}e^{s/r}\\ F_{t}&=- e^{s / r} \end{align*} Then \begin{align*} \frac{\partial r}{\partial t}&=-\frac{F_{t}}{F_{r}}\\ &= \frac{ e^{s / r} }{2r+\frac{st}{r^2}e^{s/r} } \end{align*} and \begin{align*} \frac{\partial t}{\partial r}&=-\frac{F_{r}}{F_{t}}\\ &= \frac{2r+\frac{st}{r^2}e^{s/r} }{ e^{s / r} } \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.