Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 23

Answer

$$\frac{\partial f}{\partial s} \frac{\partial f}{\partial t} =\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}$$

Work Step by Step

Given $$x=s+t,\ \ \ \ \ \ \ y= s-t $$ Since $$ \frac{\partial x}{\partial s}=1,\ \ \ \frac{\partial y}{\partial s}=1\\ \frac{\partial x}{\partial t}=1,\ \ \ \frac{\partial y}{\partial t}=-1$$ Then \begin{aligned} \frac{\partial f}{\partial s} &=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}\\ &=\frac{\partial f}{\partial x} \cdot 1+\frac{\partial f}{\partial y} \cdot 1\\ &=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial t} &=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}\\ &=\frac{\partial f}{\partial x} \cdot 1+\frac{\partial f}{\partial y} \cdot(-1)\\ &=\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y} \end{aligned} Hence \begin{align*} \frac{\partial f}{\partial s} \frac{\partial f}{\partial t}&=\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right) \left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right)\\ &=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.