Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 26

Answer

1. At the point $\left( {3,2,1} \right)$ $\frac{{\partial z}}{{\partial x}}{|_{\left( {x,y,z} \right) = \left( {3,2,1} \right)}} = - \frac{3}{{11}}$ $\frac{{\partial z}}{{\partial y}}{|_{\left( {x,y,z} \right) = \left( {3,2,1} \right)}} = \frac{1}{{22}}$ 2. At the point $\left( {3,2, - 1} \right)$ $\frac{{\partial z}}{{\partial x}}{|_{\left( {x,y,z} \right) = \left( {3,2, - 1} \right)}} = \frac{3}{{11}}$ $\frac{{\partial z}}{{\partial y}}{|_{\left( {x,y,z} \right) = \left( {3,2, - 1} \right)}} = - \frac{1}{{22}}$

Work Step by Step

Write $F\left( {x,y,z} \right) = {z^4} + {z^2}{x^2} - y - 8$. The partial derivatives are ${F_x} = 2{z^2}x$, ${\ \ }$ ${F_y} = - 1$, ${\ \ }$ ${F_z} = 4{z^3} + 2z{x^2}$ Using Eq. (7) we obtain $\frac{{\partial z}}{{\partial x}} = - \frac{{{F_x}}}{{{F_z}}}$, ${\ \ \ }$ $\frac{{\partial z}}{{\partial y}} = - \frac{{{F_y}}}{{{F_z}}}$ $\frac{{\partial z}}{{\partial x}} = - \frac{{2{z^2}x}}{{4{z^3} + 2z{x^2}}}$, ${\ \ \ }$ $\frac{{\partial z}}{{\partial y}} = \frac{1}{{4{z^3} + 2z{x^2}}}$ 1. At the point $\left( {3,2,1} \right)$ $\frac{{\partial z}}{{\partial x}}{|_{\left( {x,y,z} \right) = \left( {3,2,1} \right)}} = - \frac{{2\cdot{1^2}\cdot3}}{{4\cdot{1^3} + 2\cdot1\cdot{3^2}}} = - \frac{3}{{11}}$ $\frac{{\partial z}}{{\partial y}}{|_{\left( {x,y,z} \right) = \left( {3,2,1} \right)}} = \frac{1}{{4\cdot{1^3} + 2\cdot1\cdot{3^2}}} = \frac{1}{{22}}$ 2. At the point $\left( {3,2, - 1} \right)$ $\frac{{\partial z}}{{\partial x}}{|_{\left( {x,y,z} \right) = \left( {3,2, - 1} \right)}} = - \frac{{2\cdot{{\left( { - 1} \right)}^2}\cdot3}}{{4\cdot{{\left( { - 1} \right)}^3} + 2\cdot\left( { - 1} \right)\cdot{3^2}}} = \frac{3}{{11}}$ $\frac{{\partial z}}{{\partial y}}{|_{\left( {x,y,z} \right) = \left( {3,2, - 1} \right)}} = \frac{1}{{4\cdot{{\left( { - 1} \right)}^3} + 2\cdot\left( { - 1} \right)\cdot{3^2}}} = - \frac{1}{{22}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.