Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 24

Answer

$\frac{{\partial f}}{{\partial \rho }} = \sin \phi \cos \theta \frac{{\partial f}}{{\partial x}} + \sin \phi \sin \theta \frac{{\partial f}}{{\partial y}} + \cos \phi \frac{{\partial f}}{{\partial z}}$ $\frac{{\partial f}}{{\partial \theta }} = - \rho \sin \phi \sin \theta \frac{{\partial f}}{{\partial x}} + \rho \sin \phi \cos \theta \frac{{\partial f}}{{\partial y}}$ $\frac{{\partial f}}{{\partial \phi }} = \rho \cos \phi \cos \theta \frac{{\partial f}}{{\partial x}} + \rho \cos \phi \sin \theta \frac{{\partial f}}{{\partial y}} - \rho \sin \phi \frac{{\partial f}}{{\partial z}}$

Work Step by Step

Let $f = f\left( {x,y,z} \right)$. So, the partial derivatives of $f$ with respect to $\rho$, $\theta$ and $\phi$ are $\frac{{\partial f}}{{\partial \rho }} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial \rho }} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial \rho }} + \frac{{\partial f}}{{\partial z}}\frac{{\partial z}}{{\partial \rho }}$ $\frac{{\partial f}}{{\partial \theta }} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial \theta }} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial \theta }} + \frac{{\partial f}}{{\partial z}}\frac{{\partial z}}{{\partial \theta }}$ $\frac{{\partial f}}{{\partial \phi }} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial \phi }} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial \phi }} + \frac{{\partial f}}{{\partial z}}\frac{{\partial z}}{{\partial \phi }}$ Recall the relations from spherical to rectangular coordinates given in Section 13.7: $x = \rho \sin \phi \cos \theta $, ${\ }$ $y = \rho \sin \phi \sin \theta $, ${\ }$ $z = \rho \cos \phi $ Thus, the derivatives $\frac{{\partial f}}{{\partial \rho }}$, $\frac{{\partial f}}{{\partial \theta }}$, $\frac{{\partial f}}{{\partial \phi }}$ in terms of $\frac{{\partial f}}{{\partial x}}$, $\frac{{\partial f}}{{\partial y}}$, $\frac{{\partial f}}{{\partial z}}$ are $\frac{{\partial f}}{{\partial \rho }} = \sin \phi \cos \theta \frac{{\partial f}}{{\partial x}} + \sin \phi \sin \theta \frac{{\partial f}}{{\partial y}} + \cos \phi \frac{{\partial f}}{{\partial z}}$ $\frac{{\partial f}}{{\partial \theta }} = - \rho \sin \phi \sin \theta \frac{{\partial f}}{{\partial x}} + \rho \sin \phi \cos \theta \frac{{\partial f}}{{\partial y}}$ $\frac{{\partial f}}{{\partial \phi }} = \rho \cos \phi \cos \theta \frac{{\partial f}}{{\partial x}} + \rho \cos \phi \sin \theta \frac{{\partial f}}{{\partial y}} - \rho \sin \phi \frac{{\partial f}}{{\partial z}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.