Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 809: 31

Answer

$$\frac{\partial w}{\partial y}\bigg|_{(1,1,1)} =\frac{-1}{2}$$

Work Step by Step

Given $$\frac{1}{w^{2}+x^{2}}+\frac{1}{w^{2}+y^{2}}=1$$ Consider $$F(x,y,w)=\frac{1}{w^{2}+x^{2}}+\frac{1}{w^{2}+y^{2}}=1$$ Since \begin{align*} F_{y}&=-\frac{2 y}{\left(w^{2}+y^{2}\right)^{2} } \\ F_{w}&=\frac{-2 w}{\left(w^{2}+x^{2}\right)^{2}}-\frac{2 w}{\left(w^{2}+y^{2}\right)^{2}} \end{align*} Then \begin{align*} \frac{\partial w}{\partial y}&=-\frac{F_y}{F_w}\\ &=-\frac{\frac{-2 y}{\left(w^{2}+y^{2}\right)^{2}}}{\frac{-2 w}{\left(w^{2}+x^{2}\right)^{2}}-\frac{2 w}{\left(w^{2}+y^{2}\right)^{2}}}\\ &=-\frac{y\left(w^{2}+x^{2}\right)^{2}}{w\left(w^{2}+y^{2}\right)^{2}+w\left(w^{2}+x^{2}\right)^{2}}\\ &=\frac{-y\left(w^{2}+x^{2}\right)^{2}}{w\left(\left(w^{2}+y^{2}\right)^{2}+\left(w^{2}+x^{2}\right)^{2}\right)} \end{align*} Hence \begin{align*} \frac{\partial w}{\partial y}\bigg|_{(1,1,1)}&=\frac{-1}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.