Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 10 - Introduction to Differential Equations - 10.1 Solving Differential Equations - Exercises - Page 505: 26

Answer

$$y=\frac{C_1e^{x^{2} / 2}}{\sqrt{1+x^{2}}} $$

Work Step by Step

Given $$\left(1+x^{2}\right) y'=x^{3} y $$ Then \begin{align*} \left(1+x^{2}\right) \frac{d y}{d x}&=x^{3} y\\ \frac{1}{y} d y&=\frac{x^{3}}{1+x^{2}} d x \end{align*} Hence \begin{aligned} \int \frac{1}{y} d y &=\int\left(x-\frac{x}{1+x^{2}}\right) d x \\ \ln y &=\frac{x^{2}}{2}-\frac{1}{2} \ln \left(1+x^{2}\right)+C \\ y &=\frac{C_1e^{x^{2} / 2}}{\sqrt{1+x^{2}}} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.