Answer
The general solution is
$$ y=\ln \frac{1}{c-e^x}.$$
Work Step by Step
We have
$$ y'-e^{x+y}=0\Longrightarrow e^{-y}dy=e^{x}dx\\
\Longrightarrow\int e^{-y}dy=\int e^{x}dx+c\\
\Longrightarrow -e^{-y} =e^{x}+c\\
\Longrightarrow e^{-y} =c-e^{x}\Longrightarrow -y =\ln(c-e^x).$$
Hence, the general solution is
$$ y=\ln \frac{1}{c-e^x}.$$