Answer
$$\ln y = \sqrt{t^2+C}$$
Work Step by Step
Given
$$ (\ln y) y'-t y =0$$
Then
\begin{aligned}(\ln y) \frac{d y}{d t}-t y &=0 \\(\ln y) \frac{d y}{d t}-t y+t y &=t y \\(\ln y) \frac{d y}{d t} &=t y \\ \frac{\ln y}{y} \frac{d y}{d t} &=t\\
\int \frac{\ln y}{y} dy&=\int tdt\\
\frac{1}{2}(\ln y)^2&=\frac{1}{2}t^2+C\\
\ln y&= \sqrt{t^2+C}\\
\end{aligned}