Answer
$$ y =e^{-\sqrt{1-x^2}+c}.$$
Work Step by Step
We have
$$\sqrt{1-x^2}y'=xy\Longrightarrow \frac{dy}{y}=\frac{xdx}{\sqrt{1-x^2}}\\
\Longrightarrow\int \frac{dy}{y}=\int\frac{xdx}{\sqrt{1-x^2}}+c\\
\Longrightarrow \ln y=-\frac{1}{2} 2\sqrt{1-x^2}+c
\Longrightarrow y =e^{-\sqrt{1-x^2}+c}.$$
Hence, the general solution is
$$ y =e^{-\sqrt{1-x^2}+c}.$$