Answer
The general solution is
$$ y=e^{-\frac{1}{3}x^3+c}.$$
Work Step by Step
We have
$$ y'+x^2y=0\Longrightarrow \frac{dy}{y}=-x^2dx\\
\Longrightarrow\int \frac{dy}{y}=\int-x^2dx+c\\
\Longrightarrow \ln y=-\frac{1}{3}x^3+c.$$
Hence, the general solution is
$$ y=e^{-\frac{1}{3}x^3+c}.$$