Answer
$$ y =\ln(4t^5+c)$$
Work Step by Step
We have
$$\frac{dy}{dt}-20t^4e^{-y}=0\Longrightarrow e^{y}dy=20t^4\\
\Longrightarrow\int e^{y}dy=\int 20t^4dt+c\\
\Longrightarrow e^{y} =4t^5+c
\Longrightarrow y =\ln(4t^5+c).$$
Hence, the general solution is
$$ y =\ln(4t^5+c)$$