Answer
$$ y =\frac{3}{3x-x^3+3c}.$$
Work Step by Step
We have
$$ y'= y^2(1-x^2)\Longrightarrow \frac{dy}{y^2}=(1-x^2)dx\\
\Longrightarrow\int \frac{dy}{y^2}=\int (1-x^2)dx+c\\
\Longrightarrow -y^{-1}=x-\frac{1}{3}x^3+c
\Longrightarrow y =\frac{3}{3x-x^3+3c}.$$
Hence, the general solution is
$$ y =\frac{3}{3x-x^3+3c}.$$