Answer
$y= \frac{1}{2x^{2}-C}$
Work Step by Step
We have $\frac{dy}{dx}+4xy^{2}=0$
$\frac{dy}{dx}= -4xy^{2}$
Separating the variables, we get
$\frac{dy}{y^{2}}= -4xdx$
Integrating both sides, we get
$\int \frac{dy}{y^{2}}=\int -4xdx$
⇒ $-\frac{1}{y}= -4\times\frac{x^{2}}{2}+C$
⇒ $-\frac{1}{y}= -2x^{2}+C$
or $\frac{1}{y}= 2x^{2}-C$
or $y= \frac{1}{2x^{2}-C}$ where C is an arbitrary constant.