Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 454: 36

Answer

$$V = \pi \left( {{e^2} + 6 + e - {e^{ - 2}} - {e^{ - 1}}} \right)$$

Work Step by Step

$$\eqalign{ & y = {e^{x/2}} + {e^{ - x/2}},{\text{ }}y = 0,{\text{ }}x = - 1,{\text{ }}x = 2 \cr & V = \pi \int_a^b {{{\left[ {R\left( x \right)} \right]}^2}} dx \cr & {\text{Let }}R\left( x \right) = {e^{x/2}} + {e^{ - x/2}} \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_{ - 1}^2 {{{\left( {{e^{x/2}} + {e^{ - x/2}}} \right)}^2}} dx \cr & V = \pi \int_{ - 1}^2 {\left( {{e^x} + 2{e^0} + {e^{ - x}}} \right)} dx \cr & {\text{Integrate}} \cr & V = \pi \left[ {{e^x} + 2x - {e^{ - x}}} \right]_{ - 1}^2 \cr & V = \pi \left[ {{e^2} + 2\left( 2 \right) - {e^{ - 2}}} \right] - \pi \left[ {{e^{ - 1}} + 2\left( { - 1} \right) - {e^{ - \left( { - 1} \right)}}} \right] \cr & V = \pi \left[ {{e^2} + 4 - {e^{ - 2}}} \right] - \pi \left[ {{e^{ - 1}} - 2 - e} \right] \cr & V = \pi \left( {{e^2} + 4 - {e^{ - 2}} - {e^{ - 1}} + 2 + e} \right) \cr & V = \pi \left( {{e^2} + 6 + e - {e^{ - 2}} - {e^{ - 1}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.