Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 454: 31

Answer

$$V = 8\pi $$

Work Step by Step

$$\eqalign{ & y = 3\left( {2 - x} \right),{\text{ }}y = 0,{\text{ }}x = 0 \cr & y = 6 - 3x \cr & x = 2 - \frac{1}{3}y \cr & {\text{Let }}R\left( y \right) = 2 - \frac{1}{3}y \cr & {\text{Apply the disk method}} \cr & V = \pi \int_c^d {{{\left[ {R\left( y \right)} \right]}^2}} dy \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_0^6 {{{\left( {2 - \frac{1}{3}y} \right)}^2}} dy \cr & V = \pi \int_0^6 {\left( {4 - \frac{4}{3}y + \frac{1}{9}{y^2}} \right)} dy \cr & {\text{Integrate}} \cr & V = \pi \left[ {4y - \frac{2}{3}{y^2} + \frac{1}{{27}}{y^3}} \right]_0^6 \cr & V = \pi \left[ {4\left( 6 \right) - \frac{2}{3}{{\left( 6 \right)}^2} + \frac{1}{{27}}{{\left( 6 \right)}^3}} \right] - \pi \left[ 0 \right] \cr & V = 8\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.