Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 454: 32

Answer

$$V = \frac{5}{2}\pi $$

Work Step by Step

$$\eqalign{ & y = 9 - {x^2},{\text{ }}x = \sqrt {9 - y} \cr & {\text{Apply the washer method}} \cr & V = \pi \int_c^d {\left( {{{\left[ {R\left( y \right)} \right]}^2} - {{\left[ {r\left( y \right)} \right]}^2}} \right)} dy \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_2^3 {\left( {{{\left[ {\sqrt {9 - y} } \right]}^2} - {{\left[ 2 \right]}^2}} \right)} dy \cr & V = \pi \int_2^3 {\left( {9 - y - 4} \right)} dy \cr & V = \pi \int_2^3 {\left( {5 - y} \right)} dy \cr & {\text{Integrating}} \cr & V = \pi \left[ {\frac{{{{\left( {5 - y} \right)}^2}}}{2}} \right]_3^2 \cr & V = \pi \left[ {\frac{{{{\left( {5 - 2} \right)}^2}}}{2} - \frac{{{{\left( {5 - 3} \right)}^2}}}{2}} \right] \cr & V = \pi \left( {\frac{9}{2} - 2} \right) \cr & V = \frac{5}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.