Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 454: 26

Answer

$$V = \frac{{24}}{7}\pi $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{2}{{x + 1}},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 6 \cr & {\text{Let }}R\left( x \right) = f\left( x \right) \cr & {\text{Apply the disk method}} \cr & V = \pi \int_a^b {{{\left[ {R\left( x \right)} \right]}^2}} dx \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_0^6 {{{\left[ {\frac{2}{{x + 1}}} \right]}^2}} dx \cr & V = \pi \int_0^6 {\frac{4}{{{{\left( {x + 1} \right)}^2}}}} dx \cr & {\text{Integrate}} \cr & V = \pi \left[ { - \frac{4}{{x + 1}}} \right]_0^6 \cr & V = - 4\pi \left[ {\frac{1}{{6 + 1}} - \frac{1}{{0 + 1}}} \right] \cr & V = - 4\pi \left( { - \frac{6}{7}} \right) \cr & V = \frac{{24}}{7}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.