Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.2 Exercises - Page 454: 33

Answer

$$V = \frac{{{\pi ^2}}}{2}$$

Work Step by Step

$$\eqalign{ & y = \sin x,{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = \pi \cr & V = \pi \int_a^b {{{\left[ {R\left( x \right)} \right]}^2}} dx \cr & {\text{Let }}R\left( x \right) = \sin x \cr & {\text{So}},{\text{ the volume of the solid of revolution is}} \cr & V = \pi \int_0^\pi {{{\left( {\sin x} \right)}^2}} dx \cr & {\text{Using trigonometric identities}} \cr & V = \pi \int_0^\pi {\frac{{1 - \cos 2x}}{2}} dx \cr & {\text{Integrate}} \cr & V = \frac{\pi }{2}\left[ {x - \frac{1}{2}\sin 2x} \right]_0^\pi \cr & V = \frac{\pi }{2}\left[ {\pi - \frac{1}{2}\sin 2\pi } \right] - \frac{\pi }{2}\left[ {0 - \frac{1}{2}\sin 0} \right] \cr & V = \frac{{{\pi ^2}}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.