Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 77

Answer

a. $F(x)=\displaystyle \frac{3}{4}x^{4/3}-12$ b. $F'(x)=\sqrt[3]{x}$

Work Step by Step

a. $F(x)= \displaystyle \int_{8}^{x}\sqrt[3]{t}dt$=$\displaystyle \int_{8}^{x}t^{1/3}dt$ $=[\displaystyle \frac{3}{4}t^{4/3}]_{8}^{x}$ $=\displaystyle \frac{3}{4}(x^{4/3}-8^{4/3})$ $=\displaystyle \frac{3}{4}(x^{4/3}-(2^{3})^{4/3})$ $=\displaystyle \frac{3}{4}(x^{4/3}-16)$ $F(x)=\displaystyle \frac{3}{4}x^{4/3}-12$ b. $\displaystyle \frac{d}{dx}[\frac{3}{4}x^{4/3}-12]=x^{1/3}-0=\sqrt[3]{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.