Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 70

Answer

$F(x)=\displaystyle \frac{1}{x^{2}}-\frac{1}{4}$ $F(2)=0$ $F(5)=-0.21$ $F(8)=-\displaystyle \frac{15}{64}$

Work Step by Step

Apply The Second Fundamental Theorem of Calculus (Th.4.11 ) If $f$ is continuous on an open interval I containing $a$, then, for every $x$ in the interval, $\displaystyle \frac{d}{dx}[\int_{a}^{x}f(t)dt]=f(x)$. ------------------ $F(x)=\displaystyle \int_{2}^{x}-\frac{2}{t^{3}}dt=-\int_{2}^{x}2t^{-3}dt$ $=-2[\displaystyle \frac{t^{-2}}{-2}]_{2}^{x}=[\frac{1}{t^{2}}]_{2}^{x}=\frac{1}{x^{2}}-\frac{1}{4}$ $F(x)=\displaystyle \frac{1}{x^{2}}-\frac{1}{4}$ $F(2)=\displaystyle \frac{1}{4}-\frac{1}{4}=0$ $F(5)=\displaystyle \frac{1}{25}-\frac{1}{4}=-\frac{21}{100}=-0.21$ $F(8)=\displaystyle \frac{1}{64}-\frac{1}{4}=-\frac{15}{64}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.