Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 71

Answer

$F(x)=\sin x-\sin 1$ $F(2)\approx 0.0678$ $F(5)\approx-1.8004$ $F(8)\approx 0.1479$

Work Step by Step

Apply The Second Fundamental Theorem of Calculus (Th.4.11 ) If $f$ is continuous on an open interval I containing $a$, then, for every $x$ in the interval, $\displaystyle \frac{d}{dx}[\int_{a}^{x}f(t)dt]=f(x)$. ------------------ $F(x)=\displaystyle \int_{1}^{x}\cos\theta d\theta=$ $=[\sin\theta]_{1}^{x}=\sin x-\sin 1$ $F(x)=\sin x-\sin 1$ $F(2)=\sin 2-\sin 1\approx 0.0678$ $F(5)=\sin 5-\sin 1\approx-1.8004$ $F(8)=\sin 8-\sin 1\approx 0.1479$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.