Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 76

Answer

$F(x)=\displaystyle \frac{x^{2}}{4}(x^{2}+2)$ b. see "step by step"

Work Step by Step

a. $F(x)= \displaystyle \int_{0}^{x}t(t^{2}+1)dt=\int_{0}^{x}(t^{3}+t)dt$ $=[\displaystyle \frac{1}{4}t^{4}+\frac{1}{2}t^{2}]_{0}^{\chi}$ $=\displaystyle \frac{1}{4}x^{4}+\frac{1}{2}x^{2}$ $F(x)=\displaystyle \frac{x^{2}}{4}(x^{2}+2)$ b. $\displaystyle \frac{d}{dx}[\frac{1}{4}x^{4}+\frac{1}{2}x^{2}]=\frac{1}{4}(4x^{3})+\frac{1}{2}(2x)$ $=x^{3}+x$ $=x(x^{2}+1)$ $f(x)=x(x^{2}+1)\Rightarrow f(t)=t(t^{2}+1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.