Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 69

Answer

$F(x)=20(1-\displaystyle \frac{1}{x})$ $F(2)=10$ $F(5)=16$ $F(8)=17.5$

Work Step by Step

Apply The Second Fundamental Theorem of Calculus (Th.4.11 ) If $f$ is continuous on an open interval I containing $a$, then, for every $x$ in the interval, $\displaystyle \frac{d}{dx}\left[\int_{a}^{x}f(t)dt\right]=f(x)$. ------------------ $F(x)=\displaystyle \int_{1}^{x}\frac{20}{v^{2}}dv=\int_{1}^{x}20v^{-2}dv$ $F(x)=20\left[\displaystyle \frac{v^{-1}}{-1}\right]_{1}^{x} = 20[-\frac{1}{x}-(-1)]$ $F(x)=20(1-\displaystyle \frac{1}{x})$ $F(2)=20\left(\displaystyle \frac{1}{2}\right)=10$ $F(5)=20\left(1-\displaystyle \frac{1}{5}\right)=20\left(\frac{4}{5}\right)=16$ $F(8)=20\left(1-\displaystyle \frac{1}{8}\right)=20\left(\frac{7}{8}\right)=\frac{35}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.