Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 72

Answer

$F(x)=1-\cos x$ $F(2) \approx 1.4161$ $F(5) \approx 0.7163$ $F(8) \approx 1.1455$

Work Step by Step

Apply The Second Fundamental Theorem of Calculus (Th.4.11 ) If $f$ is continuous on an open interval I containing $a$, then, for every $x$ in the interval, $\displaystyle \frac{d}{dx}\left[\int_{a}^{x}f(t)dt\right]=f(x)$. ------------------ $F(x)=\displaystyle \int_{0}^{x}\sin\theta d\theta=[-\cos\theta]_{0}^{x}$ $=-\cos x+\cos 0$ $=1-\cos x$ $F(x)=1-\cos x$ $F(2)=1-\cos 2\approx 1.4161$ $F(5)=1-\cos 5\approx 0.7163$ $F(8)=1-\cos 8\approx 1.1455$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.