Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 290: 75

Answer

a. $F(x)=\displaystyle \frac{1}{2}x^{2}+2x$ b. see "step by step"

Work Step by Step

$\displaystyle \int kdx=kx+C, \quad \int x^{n}dx=\frac{x^{n+1}}{n+1}+C, n\neq-1 $ $\displaystyle \int[f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx$ -------------------- a. $\displaystyle \int_{0}^{x}(t+2)dt=[\frac{t^{2}}{2}+2t]_{0}^{x}=\frac{1}{2}x^{2}+2x$ b. $\displaystyle \frac{d}{dx}[\frac{1}{2}x^{2}+2x]=\frac{1}{2}(2x^{2-1})+2(1)= x+2$ $f(x)=x+2\Rightarrow f(t)=t+2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.