Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.7 Maclaurin And Taylor Polynomials - Exercises Set 9.7 - Page 658: 34

Answer

False

Work Step by Step

By Definition 9.7.3, the $n$th Maclaurin polynomial for $f$ is given by ${p_n}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{x^3} + \cdot\cdot\cdot + \dfrac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}$ Thus, ${p_4}\left( x \right)$ for ${{\rm{e}}^x}$ is ${p_4}\left( x \right) = 1 + x + \dfrac{1}{{2!}}{x^2} + \dfrac{1}{{3!}}{x^3} + \dfrac{1}{{4!}}{x^4}$ ${p_4}\left( 2 \right) = 1 + 2 + \dfrac{1}{{2!}}{2^2} + \dfrac{1}{{3!}}{2^3} + \dfrac{1}{{4!}}{2^4} = 7$ Therefore, $\left| {{{\rm{e}}^2} - {p_4}\left( 2 \right)} \right| \approx 0.389056$ Since $\dfrac{9}{{5!}} = 0.075$, we have $\left| {{{\rm{e}}^2} - {p_4}\left( 2 \right)} \right| \approx 0.389056 \gt \dfrac{9}{{5!}}$ Thus, the statement is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.