Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.7 Maclaurin And Taylor Polynomials - Exercises Set 9.7 - Page 658: 29

Answer

$n=0$: ${\ \ \ }$ ${p_0} = - 1$ $n=2$: ${\ \ \ }$ ${p_2} = - 1 + \frac{1}{2}{\left( {x - \pi } \right)^2}$ $n=4$: ${\ \ \ }$ ${p_4} = - 1 + \frac{1}{2}{\left( {x - \pi } \right)^2} - \frac{1}{{24}}{\left( {x - \pi } \right)^4}$ $n=6$: ${\ \ \ }$ ${p_6} = - 1 + \frac{1}{2}{\left( {x - \pi } \right)^2} - \frac{1}{{24}}{\left( {x - \pi } \right)^4} + \frac{1}{{720}}{\left( {x - \pi } \right)^6}$

Work Step by Step

We compute the derivatives: $\begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}&{{f^{\left( n \right)}}\left( \pi \right)}\\ 0&{\cos x}&{ - 1}\\ 1&{ - \sin x}&0\\ 2&{ - \cos x}&1\\ 3&{\sin x}&0\\ 4&{\cos x}&{ - 1}\\ 5&{ - \sin x}&0\\ 6&{ - \cos x}&1 \end{array}$ By Definition 9.7.3, the $n$th Taylor polynomial about $x = {x_0}$ for $f$ is ${p_n}\left( x \right) = f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + \dfrac{{f{\rm{''}}\left( {{x_0}} \right)}}{{2!}}{\left( {x - {x_0}} \right)^2} + \dfrac{{f{\rm{'''}}\left( {{x_0}} \right)}}{{3!}}{\left( {x - {x_0}} \right)^3} + \cdot\cdot\cdot + \dfrac{{{f^{\left( n \right)}}\left( {{x_0}} \right)}}{{n!}}{\left( {x - {x_0}} \right)^n}$ The first few Taylor polynomials about $x = {x_0} = \pi $: $n=0$: ${\ \ \ }$ ${p_0} = f\left( \pi \right) = - 1$ $n=1$: ${\ \ \ }$ ${p_1} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) = - 1$ $n=2$: ${\ \ \ }$ ${p_2} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f{\rm{''}}\left( \pi \right)}}{{2!}}{\left( {x - \pi } \right)^2} = - 1 + \dfrac{1}{2}{\left( {x - \pi } \right)^2}$ $n=3$: ${\ \ \ }$ ${p_3} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f{\rm{''}}\left( \pi \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f{\rm{'''}}\left( \pi \right)}}{{3!}}{\left( {x - \pi } \right)^3} = - 1 + \dfrac{1}{2}{\left( {x - \pi } \right)^2}$ $n=4$: ${\ \ \ }$ ${p_4} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f{\rm{''}}\left( \pi \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f{\rm{'''}}\left( \pi \right)}}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( \pi \right)}}{{4!}}{\left( {x - \pi } \right)^4}$ $ = - 1 + \dfrac{1}{2}{\left( {x - \pi } \right)^2} - \dfrac{1}{{24}}{\left( {x - \pi } \right)^4}$ $n=5$: ${\ \ \ }$ ${p_5} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( \pi \right)}}{{4!}}{\left( {x - \pi } \right)^4} + \dfrac{{{f^{\left( 5 \right)}}\left( \pi \right)}}{{5!}}{\left( {x - \pi } \right)^5}$ $ = - 1 + \dfrac{1}{2}{\left( {x - \pi } \right)^2} - \dfrac{1}{{24}}{\left( {x - \pi } \right)^4}$ $n=6$: ${\ \ \ }$ ${p_6} = f\left( \pi \right) + f'\left( \pi \right)\left( {x - \pi } \right) + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{\left( {x - \pi } \right)^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{\left( {x - \pi } \right)^3} + \dfrac{{{f^{\left( 4 \right)}}\left( \pi \right)}}{{4!}}{\left( {x - \pi } \right)^4} + \dfrac{{{f^{\left( 5 \right)}}\left( \pi \right)}}{{5!}}{\left( {x - \pi } \right)^5} + \dfrac{{{f^{\left( 6 \right)}}\left( \pi \right)}}{{6!}}{\left( {x - \pi } \right)^6}$ $ = - 1 + \dfrac{1}{2}{\left( {x - \pi } \right)^2} - \dfrac{1}{{24}}{\left( {x - \pi } \right)^4} + \dfrac{1}{{720}}{\left( {x - \pi } \right)^6}$ The first four distinct Taylor polynomials about $x = {x_0} = \pi $ are ${p_0}$, ${p_2}$, ${p_4}$, ${p_6}$ (please see the figure attached).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.