Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.7 Maclaurin And Taylor Polynomials - Exercises Set 9.7 - Page 658: 10

Answer

The Maclaurin polynomials: $n=0$, ${\ \ \ }$ ${p_0}\left( x \right) = 0$ $n=1$, ${\ \ \ }$ ${p_1}\left( x \right) = \pi x$ $n=2$, ${\ \ \ }$ ${p_2}\left( x \right) = \pi x$ $n=3$, ${\ \ \ }$ ${p_3}\left( x \right) = \pi x - \dfrac{{{\pi ^3}}}{{3!}}{x^3}$ $n=4$, ${\ \ \ }$ ${p_4}\left( x \right) = \pi x - \dfrac{{{\pi ^3}}}{{3!}}{x^3}$ The $n$th Maclaurin polynomials for $\sin \pi x$: $\mathop \sum \limits_{k = 0}^n {\left( { - 1} \right)^k}\dfrac{{{{\left( {\pi x} \right)}^{2k + 1}}}}{{\left( {2k + 1} \right)!}}$

Work Step by Step

Let $f\left( x \right) = \sin \pi x$. Thus, the derivatives: $f'\left( x \right) = \pi \cos \pi x$, ${\ \ \ \ \ }$ $f'\left( 0 \right) = \pi $ $f{\rm{''}}\left( x \right) = - {\pi ^2}\sin \pi x$, ${\ \ \ \ \ }$ $f{\rm{''}}\left( 0 \right) = 0$ $f{\rm{'''}}\left( x \right) = - {\pi ^3}\cos \pi x$, ${\ \ \ \ \ }$ $f{\rm{'''}}\left( 0 \right) = - {\pi ^3}$ $f{\rm{''''}}\left( x \right) = {\pi ^4}\sin \pi x$, ${\ \ \ \ \ }$ $f{\rm{''''}}\left( 0 \right) = 0$ The Maclaurin polynomials: $n=0$, ${\ \ \ }$ ${p_0}\left( x \right) = f\left( 0 \right) = 0$ $n=1$, ${\ \ \ }$ ${p_1}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x = \pi x$ $n=2$, ${\ \ \ }$ ${p_2}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} = \pi x$ $n=3$, ${\ \ \ }$ ${p_3}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{x^3} = \pi x - \dfrac{{{\pi ^3}}}{{3!}}{x^3}$ $n=4$, ${\ \ \ }$ ${p_4}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{f{\rm{''''}}\left( 0 \right)}}{{4!}}{x^4} = \pi x - \dfrac{{{\pi ^3}}}{{3!}}{x^3}$ We obtain ${p_1}\left( x \right) = {p_2}\left( x \right)$, ${p_3}\left( x \right) = {p_4}\left( x \right)$. Thus, ${p_{2k + 1}}\left( x \right) = {p_{2k + 2}}\left( x \right) = \pi x - \dfrac{{{\pi ^3}}}{{3!}}{x^3} + \cdot\cdot\cdot + {\left( { - 1} \right)^k}\dfrac{{{{\left( {\pi x} \right)}^{2k + 1}}}}{{\left( {2k + 1} \right)!}}$, ${\ \ \ }$ for $k = 0,1,2,\cdot\cdot\cdot$ The $n$th Maclaurin polynomials for $\sin \pi x$ in sigma notation: $\mathop \sum \limits_{k = 0}^n {\left( { - 1} \right)^k}\dfrac{{{{\left( {\pi x} \right)}^{2k + 1}}}}{{\left( {2k + 1} \right)!}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.