Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.7 Maclaurin And Taylor Polynomials - Exercises Set 9.7 - Page 658: 16

Answer

The Maclaurin polynomials: $n=0$, ${\ \ \ }$ ${p_0}\left( x \right) = 0$ $n=1$, ${\ \ \ }$ ${p_1}\left( x \right) = x$ $n=2$, ${\ \ \ }$ ${p_2}\left( x \right) = x + {x^2}$ $n=3$, ${\ \ \ }$ ${p_3}\left( x \right) = x + {x^2} + \dfrac{1}{{2!}}{x^3}$ $n=4$, ${\ \ \ }$ ${p_4}\left( x \right) = x + {x^2} + \dfrac{1}{{2!}}{x^3} + \dfrac{1}{{3!}}{x^4}$ The $n$th Maclaurin polynomials in sigma notation: $\mathop \sum \limits_{k = 1}^n \dfrac{{{x^k}}}{{\left( {k - 1} \right)!}}$

Work Step by Step

Let $f\left( x \right) = x{{\rm{e}}^x}$. Thus, the derivatives: $f'\left( x \right) = x{{\rm{e}}^x} + {{\rm{e}}^x}$, ${\ \ \ \ \ }$ $f'\left( 0 \right) = 1$ $f{\rm{''}}\left( x \right) = x{{\rm{e}}^x} + 2{{\rm{e}}^x}$, ${\ \ \ \ \ }$ $f{\rm{''}}\left( 0 \right) = 2$ $f{\rm{'''}}\left( x \right) = x{{\rm{e}}^x} + 3{{\rm{e}}^x}$, ${\ \ \ \ \ }$ $f{\rm{'''}}\left( 0 \right) = 3$ $f{\rm{''''}}\left( x \right) = x{{\rm{e}}^x} + 4{{\rm{e}}^x}$, ${\ \ \ \ \ }$ $f{\rm{''''}}\left( 0 \right) = 4$ The Maclaurin polynomials: $n=0$, ${\ \ \ }$ ${p_0}\left( x \right) = f\left( 0 \right) = 0$ $n=1$, ${\ \ \ }$ ${p_1}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x = x$ $n=2$, ${\ \ \ }$ ${p_2}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} = x + {x^2}$ $n=3$, ${\ \ \ }$ ${p_3}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{x^3} = x + {x^2} + \dfrac{1}{{2!}}{x^3}$ $n=4$, ${\ \ \ }$ ${p_4}\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \dfrac{{f{\rm{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{f{\rm{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{f{\rm{''''}}\left( 0 \right)}}{{4!}}{x^4} = x + {x^2} + \dfrac{1}{{2!}}{x^3} + \dfrac{1}{{3!}}{x^4}$ ${p_{k + 1}}\left( x \right) = x + {x^2} + \dfrac{1}{{2!}}{x^3} + \dfrac{1}{{3!}}{x^4} + \cdot\cdot\cdot + \dfrac{{{x^{k + 1}}}}{{k!}}$, ${\ \ \ }$ for $k = 0,1,2,\cdot\cdot\cdot$ The $n$th Maclaurin polynomials for $x{{\rm{e}}^x}$ in sigma notation: $\mathop \sum \limits_{k = 1}^n \dfrac{{{x^k}}}{{\left( {k - 1} \right)!}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.