Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 9

Answer

$\frac{1}{5}\ln|\frac{x-4}{x+1}|+C$

Work Step by Step

$\frac{1}{x^{2}-3x-4}=\frac{1}{(x-4)(x+1)}$ $=\frac{A}{x-4}+\frac{B}{x+1}$ $⇒1= A(x+1)+B(x-4)$ Equating the coefficients of x and the constant term, we get A+B=0 and A-4B=1. Solving these equations, we get $A= \frac{1}{5}$ and $B= -\frac{1}{5}$. Thus $\frac{1}{x^{2}-3x-4}= \frac{1}{5(x-4)}-\frac{1}{5(x+1)}$ Therefore $\int\frac{dx}{x^{2}-3x-4}=\frac{1}{5}\int\frac{dx}{(x-4)}-\frac{1}{5}\int\frac{dx}{x+1}$ $=\frac{1}{5}(\ln|x-4|-\ln|x+1|)+C$ $=\frac{1}{5}\ln|\frac{x-4}{x+1}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.