Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 7

Answer

$$\frac{{Ax + B}}{{{x^2} + 5}} + \frac{{Cx + D}}{{{{\left( {{x^2} + 5} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & {\text{Given exercise }}\frac{{4{x^3} - x}}{{{{\left( {{x^2} + 5} \right)}^2}}} \cr & {\text{In the denominator the expression is }}{\left( {{x^2} + 5} \right)^2}{\text{ it is a quadratic}} \cr & {\text{repeated factor, then the numerator for each term of the partial}} \cr & {\text{decomposition introduce in the numerator one terms of the form}} \cr & {\text{linear }}Ax + B{\text{ and }}Cx + D,{\text{ the partial decomposition is:}} \cr & \frac{{4{x^3} - x}}{{{{\left( {{x^2} + 5} \right)}^2}}} = \frac{{Ax + B}}{{{x^2} + 5}} + \frac{{Cx + D}}{{{{\left( {{x^2} + 5} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.