Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 2

Answer

$$\frac{A}{x} + \frac{B}{{x + 2}} + \frac{C}{{x - 2}}$$

Work Step by Step

$$\eqalign{ & \frac{5}{{x\left( {{x^2} - 4} \right)}} \cr & {\text{Factor the difference of two squares }}{x^2} - 4 \cr & \frac{5}{{x\left( {{x^2} - 4} \right)}} = \frac{5}{{x\left( {x + 2} \right)\left( {x - 2} \right)}} \cr & {\text{All the factors are in the denominator,}}{\text { so the numerator for each factor }} \cr & {\text{is a constant}}{\text{.}} \cr & {\text{The partial fraction decomposition is in the form:}} \cr & \frac{5}{{x\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{A}{x} + \frac{B}{{x + 2}} + \frac{C}{{x - 2}} \cr & \frac{5}{{x\left( {{x^2} - 4} \right)}} = \frac{A}{x} + \frac{B}{{x + 2}} + \frac{C}{{x - 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.