Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 8

Answer

$$\frac{A}{{x - 2}} + \frac{{Bx + C}}{{{x^2} + 1}} + \frac{{Dx + E}}{{{{\left( {{x^2} + 1} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & \frac{{1 - 3{x^4}}}{{\left( {x - 2} \right){{\left( {{x^2} + 1} \right)}^2}}} \cr & x - 2{\text{ is a linear factor, then its decomposition is }}\frac{A}{{x - 2}} \cr & {\left( {{x^2} + 1} \right)^2}{\text{ is a linear repeated quadratic factor, then}} \cr & {\text{the numerator for each term it is a linear factor }}Bx + C{\text{ }} \cr & {\text{and }}Dx + E \cr & {\text{The partial decomposition is:}} \cr & \frac{{1 - 3{x^4}}}{{\left( {x - 2} \right){{\left( {{x^2} + 1} \right)}^2}}} = \frac{A}{{x - 2}} + \frac{{Bx + C}}{{{x^2} + 1}} + \frac{{Dx + E}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.