Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 20

Answer

$$\frac{1}{2}\ln \left| {3{x^2} + 2x - 1} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{3x + 1}}{{3{x^2} + 2x - 1}}} dx \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = 3{x^2} + 2x - 1,\,\,\,du = \left( {6x + 2} \right)dx,\,\,\,\,\,\,\,dx = \frac{{du}}{{2\left( {3x + 1} \right)}} \cr & {\text{write in terms of }}u \cr & \int {\frac{{3x + 1}}{{3{x^2} + 2x - 1}}} dx = \int {\frac{{3x + 1}}{u}} \left( {\frac{{du}}{{2\left( {3x + 1} \right)}}} \right) \cr & = \frac{1}{2}\int {\frac{{du}}{u}} \cr & = \frac{1}{2}\ln \left| u \right| + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}\ln \left| {3{x^2} + 2x - 1} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.