Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.5 Integrating Rational Functions By Partial Fractions - Exercises Set 7.5 - Page 521: 3

Answer

$$\frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x - 1}}$$

Work Step by Step

$$\eqalign{ & \frac{{2x - 3}}{{{x^3} - {x^2}}} \cr & {\text{Factoring the denominator}}{\text{, the gcf is }}{x^2} \cr & \frac{{2x - 3}}{{{x^3} - {x^2}}} = \frac{{2x - 3}}{{{x^2}\left( {x - 1} \right)}} \cr & {x^2}{\text{ is a linear repeated factor.}}{\text{ Its decomposition is }}\frac{A}{x} + \frac{B}{{{x^2}}} \cr & x - 1{\text{ is a linear factor }} \cr & {\text{Then}}{\text{,}} \cr & \frac{{2x - 3}}{{{x^2}\left( {x - 1} \right)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x - 1}} \cr & \frac{{2x - 3}}{{{x^3} - {x^2}}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.