Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 30

Answer

$$\frac{1}{{\pi \ln 2}}\left( {{2^{\pi x}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{2^{\pi x}}} dx \cr & {\text{substitute }}u = \pi x \cr & du = \pi dx \cr & \frac{1}{\pi }du = dx \cr & \int {{2^{\pi x}}} dx \cr & = \int {{2^u}\left( {\frac{1}{\pi }du} \right)} \cr & = \frac{1}{\pi }\int {{2^u}} du \cr & {\text{find the antiderivative}} \cr & = \frac{1}{\pi }\left( {\frac{{{2^u}}}{{\ln 2}}} \right) + C \cr & = \frac{1}{{\pi \ln 2}}\left( {{2^u}} \right) + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \pi x \cr & = \frac{1}{{\pi \ln 2}}\left( {{2^{\pi x}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.