Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 31

Answer

a) $\int$sin(x)cos(x)dx, Solve using u-substitution; u=sin(x) =$-\frac{sin^2(x)}{2}+c$ b) $\int$sin(x)cos(x)dx, Solve using the trig identity; sin(2x)=2sin(x)cos(x) =$-\frac{cos(2x)}{4}+c$

Work Step by Step

a) $\int$sin(x)cos(x)dx, Solve using u-substitution; u=sin(x) =$\int ucos(x)dx$ u=sin(x), -du=cos(x)dx =$-\int udu$ =$-\frac{u^2}{2}+c$ =$-\frac{sin^2(x)}{2}+c$ b) $\int$sin(x)cos(x)dx, Solve using the trig identity; sin(2x)=2sin(x)cos(x) = $\frac{1}{2}\int sin(2x)$, (trig identity: sin(2x)=2sin(x)cos(x) => $\frac{sin(2x)}{2}=sin(x)cos(x)$) =$\frac{1}{2}sin(u)dx$, u=2x, $\frac{du}{2}=dx$ =$\frac{1}{4}\int sin(u)du$ =$-\frac{1}{4}cos(u)+c$ =$-\frac{cos(2x)}{4}+c$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.