Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 24

Answer

$$ \sin \left( {\ln x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cos \left( {\ln x} \right)}}{x}} dx \cr & {\text{substitute }}u = \ln x,{\text{ }} \cr & du = \frac{1}{x}dx \cr & = \int {\cos \left( {\ln x} \right)\frac{1}{x}} dx \cr & = \int {\cos u} du \cr & {\text{find the antiderivative }} \cr & = \sin u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \ln x \cr & = \sin \left( {\ln x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.