Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 22

Answer

$$\ln \left| {x + \sqrt {{x^2} - 4} } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {{x^2} - 4} }}} \cr & {\text{substitute }}u = x,{\text{ }}du = dx \cr & = \int {\frac{{dx}}{{\sqrt {{x^2} - 4} }} = } \int {\frac{{dx}}{{\sqrt {{x^2} - {{\left( 2 \right)}^2}} }}} \cr & = \int {\frac{{du}}{{\sqrt {{u^2} - {2^2}} }}} \cr & {\text{find the antiderivative }}\left( {{\text{formula 25 page 490}}} \right) \cr & = \ln \left| {u + \sqrt {{u^2} - {{\left( 2 \right)}^2}} } \right| + C \cr & = \ln \left| {u + \sqrt {{u^2} - 4} } \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = x \cr & = \ln \left| {x + \sqrt {{x^2} - 4} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.