Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 29

Answer

$$ - \frac{1}{{2\ln 4}}\left( {{4^{ - {x^2}}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x{4^{ - {x^2}}}} dx \cr & {\text{substitute }}u = - {x^2} \cr & du = - 2xdx \cr & - \frac{1}{2}du = xdx \cr & \int {x{4^{ - {x^2}}}} dx \cr & = \int {{4^u}\left( { - \frac{1}{2}du} \right)} \cr & = - \frac{1}{2}\int {{4^u}} du \cr & {\text{find the antiderivative}} \cr & = - \frac{1}{2}\left( {\frac{{{4^u}}}{{\ln 4}}} \right) + C \cr & = - \frac{1}{{2\ln 4}}\left( {{4^u}} \right) + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = - {x^2} \cr & = - \frac{1}{{2\ln 4}}\left( {{4^{ - {x^2}}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.