Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 26

Answer

$$ - 2\cosh \left( {{x^{ - 1/2}}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sinh \left( {{x^{ - 1/2}}} \right)}}{{{x^{3/2}}}}} dx \cr & {\text{substitute }}u = {x^{ - 1/2}}{\text{ }} \cr & du = - \frac{1}{2}{x^{ - 3/2}}dx \cr & - 2du = \frac{1}{{{x^{3/2}}}}dx \cr & = \int {\sinh \left( {{x^{ - 1/2}}} \right)\frac{1}{{{x^{3/2}}}}} dx \cr & = \int {\sinh u\left( { - 2du} \right)} \cr & = - 2\int {\sinh u} du \cr & {\text{find the antiderivative }}\left( {{\text{formula 15 page 489}}} \right) \cr & = - 2\cosh u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {x^{ - 1/2}} \cr & = - 2\cosh \left( {{x^{ - 1/2}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.