Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.1 An Overview Of Integration Methods - Exercises Set 7.1 - Page 491: 21

Answer

$$\frac{1}{2}\coth \left( {\frac{2}{x}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\operatorname{csch} }^2}\left( {2/x} \right)}}{{{x^2}}}} dx \cr & {\text{substitute }}u = \frac{2}{x},{\text{ }}du = - \frac{2}{{{x^2}}}dx,\, - \frac{1}{2}du = \frac{{dx}}{{{x^2}}} \cr & = \int {{{\operatorname{csch} }^2}\left( {2/x} \right)\frac{1}{{{x^2}}}} dx \cr & = \int {{{\operatorname{csch} }^2}\left( u \right)} \left( { - \frac{1}{2}du} \right) \cr & = - \frac{1}{2}\int {{{\operatorname{csch} }^2}\left( u \right)} du \cr & {\text{find the antiderivative }}\left( {{\text{formula 18 page 489}}} \right) \cr & = - \frac{1}{2}\left( { - \coth u} \right) + C \cr & = \frac{1}{2}\coth u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \frac{2}{x} \cr & = \frac{1}{2}\coth \left( {\frac{2}{x}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.