Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 38

Answer

We have proven the property

Work Step by Step

For two vectors $\vec{v}\ \text {and} \ \vec{u}$ in 3d-space, we get that: \[ \begin{aligned} \vec{u} \cdot \vec{v} &=\|\vec{v}\|\|\vec{u}\| \cos \theta \Rightarrow \cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|\|\vec{u}\|} \\ \|\vec{u} \times \vec{v}\| &=\|\vec{u}\|\|\vec{v}\| \sin \theta \Rightarrow \sin \theta=\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\|\|\vec{v}\|} \end{aligned} \] where $\theta$ is the angle between $\vec{v}$ , $\vec{u}$. From the second equation in (1) we get that: \[ \begin{aligned} \sin \theta=\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{v}\|\|\vec{u}\|} \Rightarrow\|\vec{v} \times \vec{u}\|^{2} &=\sin ^{2} \theta \|\vec{v}\|^{2}\|\vec{u}\|^{2} \\ &=\left(-\cos ^{2}+1)\theta\|\vec{u}\|^{2}\|\vec{v}\|^{2}\right \\ &=\left\|\vec{u}^{2}\right\| \vec{v}\left\|^{2}-\right\| \vec{u}\left\|^{2}\right\| \vec{v} \|^{2} \cos ^{2} \theta \\ &=-\|\vec{u}\|^{2}\|\vec{v}\|^{2}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right)^{2}+\|\vec{v}\|^{2}\|\vec{u}\|^{2}\\ &=-(\vec{u} \cdot \vec{v})^{2}+\|\vec{v}\|^{2}\|\vec{u}\|^{2} \end{aligned} \] We have proven that \[ \|\vec{v} \times \vec{u}\|^{2}=-(\vec{u} \cdot \vec{v})^{2}+\|\vec{u}\|^{2}\|\vec{v}\|^{2} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.