Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 24

Answer

\[ 1=\vec{u} \cdot(\vec{w} \times \vec{v}) \]

Work Step by Step

To evaluate $ (\vec{w} \times \vec{v})\cdot\vec{u}$, we can use the following formula. \[ (\vec{w} \times \vec{v})\cdot\vec{u} =\left|\begin{array}{lll} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{array}\right| \] It's given that \[ \begin{array}{l} \vec{w}=\hat{i}+\hat{j}+\hat{k}=\langle1,1,1\rangle , \quad \vec{v}=\hat{i}+\hat{j}=\langle 1,1,0\rangle \text { and } \\ \vec{u}=\hat{i}=\langle 1,0,0\rangle \end{array} \] And then, \[ \begin{aligned} (\vec{w} \times \vec{v}) \cdot\vec{u}&=\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right| \\ &=1\left|\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right|-0\left|\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right|+0\left|\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right| \\ &=1(1-0)=1 \end{aligned} \] We found that: \[ 1=(\vec{w} \times \vec{v})\cdot\vec{u} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.