Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 23

Answer

\[ (\vec{v} \times \vec{w})\cdot\vec{u} =-3 \]

Work Step by Step

To evaluate $ (\vec{w} \times \vec{v})\cdot\vec{u}$, we can use the following formula. \[ (\vec{w} \times \vec{v})\cdot \vec{u} =\left|\begin{array}{lll} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3} \end{array}\right| \] It's given that \[ \vec{w}=\langle 4,0,1\rangle , \vec{v}=\langle 1,-3,1\rangle \text { and } \vec{u}=\langle 2,1,0\rangle \] And then, \[ \begin{aligned} (\vec{w} \times \vec{v})\cdot\vec{u} &=\left|\begin{array}{rrr} 2 & 1 & 0 \\ 1 & -3 & 1 \\ 4 & 0 & 1 \end{array}\right| \\ &=2\left|\begin{array}{cc} -3 & 1 \\ 0 & 1 \end{array}\right|-(1)\left|\begin{array}{cc} 1 & 1 \\ 4 & 1 \end{array}\right|+0\left|\begin{array}{cc} 1 & -3 \\ 4 & 0 \end{array}\right| \end{aligned} \] \[ -3=(\vec{w} \times \vec{v})\cdot \vec{u} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.