Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 31

Answer

(b) 2.68 units $(a)$ 3.7 units

Work Step by Step

We know that $\frac{\|A \vec{B} \times A \vec{B}\|}{\|A \vec{p}\|}=d$ $(a)$ \[ \begin{array}{c} -4 \hat{\imath}+2 \hat{k}=\overrightarrow{A P} \\ -(3 \hat{\imath}-2 \hat{\jmath}+4 \hat{k})= \overrightarrow{A B}\\ =\frac{\|(3 \hat{\imath}-2 \hat{\jmath}+4 \hat{\kappa})\times( -4 \hat{\imath}+2 \hat{R}) \|}{\sqrt{29}} \\ = \sqrt{\frac{141}{29}}.2=4.4 \text { units } \end{array} \] (b) \[ \begin{array}{c} 2 \hat{\imath}+2 \hat{\jmath}=\overrightarrow{A P} \\ -2 \hat{\imath}+\hat{\jmath}= \overrightarrow{A B}\\ =\frac{\|(-2 \hat{\imath}+\hat{\jmath})\times \ (2 \hat{\imath}+2 \hat{\jmath}) |}{\sqrt{5}} \\ =116 \hat{k} \| / \sqrt{5} \\ =\frac{6}{\sqrt{5}}=2.68 \mathrm{units} \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.