Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.4 Cross Product - Exercises Set 11.4 - Page 804: 37

Answer

\[ \pi / 4=\theta \]

Work Step by Step

For two vectors $\vec{u}, \vec{v}$ in 3d-space, we have that: \[ \begin{aligned} \|\vec{v} \times \vec{u}\| &=\|\vec{v}\|\|\vec{u}\| \sin \theta \Rightarrow \sin \theta=\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\|\|\vec{v}\|} \\ \vec{u} \cdot \vec{v} &=\|\vec{u}\|\|\vec{v}\| \cos \theta \Rightarrow \cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|} \end{aligned} \] Where $\theta$ is the angle between $\vec{u}$ and $\vec{v}$; since $\vec{u} \cdot \vec{v}=\|\vec{u} \times \vec{v}\|$, we get that \[ \begin{aligned} \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{\|\vec{u} \times \vec{v}\|}{\|\vec{u}\|\|\vec{v}\|} & \Rightarrow \sin \theta=\cos \theta \\ & \Rightarrow 1=\tan \theta \\ & \Rightarrow \frac{\pi}{4}=\theta \end{aligned} \] So, the angle between $\vec{v}$, $\vec{u}$ is $\frac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.